Использование разных видов азотных удобрений
Содержание:
- Нормы для разных типов грунта
- Соединения азота
- Промышленное производство
- Недостаток азота — для чего нужен азот?
- 6. Тренировки
- Немного истории открытия азота
- Как настроить центр сообщений на телефоне
- Криоаппликация
- Применение
- Применение на различных типах почв
- Cвойства аммиака.
- Разновидности удобрений, содержащих азот
- Соединения азота
Нормы для разных типов грунта
Усредненные нормы внесения азотных удобрений:
карбамид и селитра до 25 г на квадратный метр;
кальциевая селитра до 70 г;
комплексные смеси, содержащие азот от 15 до 30 г, в зависимости от состояния растений.
Навоза перепревшего вносят до 6 кг на квадратный метр, компоста до 10 кг, так как он является полностью безопасным для роста культур. Сидераты можно сеять и вносить несколько раз за сезон. Вместе с азотистыми компонентами необходимо соблюдать дозировки калия и фосфора, чтобы питание культур было сбалансировано.
Замедлите старение кожи без вредных инъекций и операций. Восточный эликсир молодости. Вся информация — здесь
Вам также будет интересно почитать:
Кальциевая селитра – удобрение для почв с повышенной кислотностью
Мочевина для огурцов: как правильно проводить подкормки
Калиевая селитра – удобрение для плодоношения, особенности применения в саду и на огороде
Удобрение мочевина: применение на огороде, инструкция, советы
Соединения азота
Свободный азот при обычных температурах химически инертен; при высокой температуре вступает в соединение со многими элементами.
С водородом азот образует ряд соединений, основными из которых являются следующие:
1. Аммиак (см.). Азот, входящий в состав аммиака, принято называть аммиачным азотом. В санитарно-гигиенической практике определение аммиачного азота производят при исследовании питьевых вод, при изучении процессов гниения белковых веществ (в частности, мяса и рыбы) и так далее.
2. Гидразин (N2H4) — бесцветная, дымящая на воздухе жидкость. С кислотами образует соли гидразина, например, с соляной кислотой — хлористый гидразоний (N2H4-HCl). Применяется как сильный восстановитель
Органические соединения гидразина имеют важное значение для характеристики Сахаров (см. Углеводы).
3. Азотистоводородная кислота (HN3) — бесцветная, кипящая при t° 37° жидкость с резким запахом. Взрывается с большой силой при нагревании. В водных растворах устойчива и проявляет свойства слабой кислоты. Соли ее — азиды — неустойчивы и взрываются при нагревании или ударе. Азид свинца Pb(N3)2 применяется в качестве детонатора. Вдыхание паров HN3 вызывает сильную головную боль и раздражение слизистых оболочек.
С кислородом азот образует пять окислов.
1. Закись азота, или веселящий газ (N2O), — бесцветный газ, получают при нагревании (выше 190°) азотнокислого аммония:
NH4NO3 = N2O + 2H2O.
В смеси с кислородом закись азота применяют как слабый наркотик, вызывающий состояние опьянения, эйфории, притупление болевой чувствительности. Применяется для ингаляционного наркоза (см.).
2. Окись азота (NO) — бесцветный газ, плохо растворимый в воде; в лабораториях получают действием азотной кислоты средней концентрации на медь:
8HNO3 + 3Cu = 2NO + 3Cu (NO3)2 + 4H2O,
в технике — продуванием воздуха через пламя электрической дуги. На воздухе мгновенно окисляется, образуя красно-бурые пары двуокиси азота; вместе с последней вызывает отравления организма (см. ниже — Профессиональные вредности соединений азота).
3. Двуокись азота (NO2) — красно-бурый газ, имеющий характерный запах и состоящий из собственно двуокиси А. и ее бесцветного полимера — четырехокиси азота (N2O4) — азотноватого ангидрида. Двуокись азота легко сгущается в красно-бурую жидкость, кипящую при t° 22,4° и затвердевающую при t° — 11° в бесцветные кристаллы. Растворяется в воде с образованием азотистой и азотной кислот:
2NO2 + H2O = HNO2 + HNO3.
Является сильным окислителем и опасным ядом. Двуокись азота образуется при получении азотной кислоты, при реакциях нитрования, травлении металлов и тому подобное и поэтому представляет собой профессиональный яд.
4. Трехокись азота, ангидрид азотистой к-ты (N2O3), — темно-синяя жидкость, затвердевающая при t° — 103° в голубые кристаллы. Устойчива лишь при низких температурах. С водой образует слабую и непрочную азотистую кислоту, со щелочами — соли азотистой кислоты — нитриты.
5. Пятиокись азота, ангидрид азотной к-ты (N2O5), — бесцветные призматические кристаллы, имеющие плотность 1,63, плавящиеся при t° 30° в желтую, слегка разлагающуюся жидкость; разложение усиливается при нагревании и при действии света. Температура кипения около 50°. С водой образует сильную, довольно устойчивую азотную кислоту, со щелочами — соли этой кислоты — нитраты.
При нагревании азот непосредственно соединяется со многими металлами, образуя нитриды металлов, например Li3N, Mg3N2, AlN и др. Многие из них разлагаются водой с образованием аммиака, например
Mg3N2 + 6H2O = 2NH3 + 3Mg(OH)2.
Азот входит в состав большого числа органических соединений, среди которых особое значение имеют алкалоиды, аминокислоты, амины, нитросоединения, цианистые соединения и наиболее сложные природные соединения — белки.
Фиксация атмосферного азота. В течение долгого времени исходными веществами для получения разнообразных соединений азота, необходимых для сельского хозяйства, промышленности и военного дела, служили природная чилийская селитра и аммиак, получаемый при сухой перегонке каменного угля. С истощением залежей чилийской селитры человечеству грозил «азотный голод». Проблема азотного голода была разрешена в конце 19 и начале 20 века путем разработки ряда промышленных методов фиксации атмосферного азота. Наиболее важным из них является синтез аммиака по схеме:
N2 + 3H2 <-> 2NH3
(см. Аммиак).
Промышленное производство
В настоящее время в основном используют три технологии для получения инертного азота, основанные на разделении атмосферного воздуха:
Разделяющие криогенные установки функционируют по принципу сжижения воздуха. Сначала он сжимается компрессором, затем проходит через теплообменники и расширяется в детандере. В результате охлажденный воздух становится жидкостью. За счет разной температуры кипения кислорода и азота происходит их разделение. Процесс многократно повторяется на специальных ректификационных тарелках. Завершается он получением чистейшего кислорода, аргона и азота. Данный способ наиболее эффективен для крупных предприятий по причине значительных габаритов системы, сложности ее пуска и обслуживания. Достоинство метода состоит в том, что можно получить азот наивысшей чистоты, как жидкий, так и газообразный, в любых количествах. При этом расход энергии на изготовление 1 л вещества составляет 0,4-1,6 кВт/ч (в зависимости от технологической схемы установки).
Мембранная технология разделения газов начала применяться в 70-х годах прошлого века. Высокая экономичность и эффективность данного метода послужила достойной альтернативой криогенному и адсорбционному способам получения чистого азота. Сегодня в установках используются мембраны последнего поколения высокой производительности. Теперь это не пленка, а тысячи полых волокон, на которые нанесен селективный слой. Подвижные составляющие в установке отсутствуют, поэтому значительно увеличивается продолжительность ее эксплуатации без поломок. Отфильтрованный воздух подается в систему. Кислород беспрепятственно проходит сквозь нее, а азот выводится под давлением через противоположную сторону мембраны и направляется в накопитель. С помощью данных установок изготавливается вещество с чистотой до 99,95%. Таким образом осуществляется производство азота из атмосферного воздуха. Ограниченная чистота получаемого азота не позволяет применять данный метод крупным изготовителям с большими потребностями высокочистого азота.
Недостаток азота — для чего нужен азот?
Недостаток азота приводит к замедлению процессов биосинтеза и резкому ослаблению интенсивности фотосинтеза — основного процесса в развитии всех растений. Одним из первых симптомов азотного дефицита является появление бледно-зеленой окраски листьев. А в случае длительного азотного голодания окраска нижних листьев становится желто-оранжевой или даже красной, в зависимости от вида растения.
При сильном азотном дефиците наблюдается появление некрозов, то есть омертвления тканей растения.
Азотное голодание становится причиной сокращения периода вегетационного роста у растений, более раннего созревания плодов, и как результат — низкой урожайности и снижению качества плодов.
Как обогатить растения азотом. Сами по себе растения не могут поглощать свободный азот. В результате этого большая часть атмосферного азота им недоступна.
Азот может поглощаться корневой системой растений, причем, только соединенным с другими химическими элементами в виде нитратов и аммония — наиболее доступных форм азота для растений в почве.
6. Тренировки
Тренировки и активный образ жизни удивительным образом сказываются на всех сторонах жизни. В конце концов, мы не были предназначены для сидения целый день.
Мы постоянно должны быть в движении, ходить пешком, заниматься скалолазанием, и т.д.
Практически во время всех видов физических упражнений (от хождения до неистовых силовых тренировок) происходит увеличение уровня окиси азота, как временно, так и на постоянной основе.
Кроме того, если вы посещаете спортзал регулярно, выработка оксида азота увеличится по мере того, как ваши мышцы увеличиваются в размерах. В некотором смысле, ваше тело замечает, что мышцам нужно больше крови, кислорода и питательных веществ, поэтому оно увеличивает синтез окиси азота и, таким образом, также увеличивается ваш естественный уровень оксида азота…
… Это одна из причин, почему у культуристов слишком сильно выступают кровеносные сосуды.
Немного истории открытия азота
Внешний вид вещества | |
---|---|
Жидкий азот. При н.у. — газ без цвета, вкуса и запаха. |
|
Свойства атома | |
Имя, символ, номер | Азот / Nitrogenium (N), 7 |
Атомная масса (молярная масса) |
14,00674 а. е. м. (г/моль) |
Электронная конфигурация | 2s2 2p3 |
Радиус атома | 92 пм |
Химические свойства | |
Ковалентный радиус | 75 пм |
Радиус иона | 13 (+5e) 171 (-3e) пм |
Электроотрицательность | 33,04 (шкала Полинга) |
Степени окисления | 5, 4, 3, 2, 1, 0, −1, −3 |
Энергия ионизации (первый электрон) |
1401,5 (14,53) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 0,808 г/см3 (−195,8 °C); при н.у. 0,001251 г./см3 |
Теплота плавления | (N2) 0,720 кДж/моль |
Температура кипения | 77,4 K |
Теплота испарения | 0,904 кДж/моль |
Молярная теплоёмкость | 29,125(газ N2) Дж/(K·моль) |
Молярный объём | 17,3 см3/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | кубическая |
Параметры решётки | 5,661 Å |
Прочие характеристики | |
Теплопроводность | (300 K) 0,026 Вт/(м·К) |
Генри Кавендишем еще в 1772 году был осуществлен интересный эксперимент, позволивший выделить новое простое вещество — азот. Исследователь выделил азот, но не сумел его распознать. Эксперимент заключался в следующем: над раскаленным углем многократно пропускался воздух, который впоследствии обрабатывался щелочью. Такие манипуляции позволили ученому выделить остаток, который им был определен, как мефитический или удушливый воздух.
Если рассматривать данный эксперимент с точки зрения современной химии, можно прийти к выводу, что кислород, находящийся в потоке воздуха, вступая в реакцию с раскаленным углем, связывался в углекислый газ. Щелочь, которая была задействована на следующем этапе эксперимента, поглощала полученное углекислое соединение. Таким образом, можно прийти к простому выводу, что полученный остаток в большей своей части являлся азотом, который экспериментатор сумел путем достаточно простых действий выделить из атмосферного воздуха.
Не сумев правильно установить полученное вещество, Генри Кавендиш в том же 1772 году сообщил о результатах своей работы Джозефу Пристли, который в то же самое время работал над решением аналогичной задачи. Он осуществлял эксперименты, намереваясь связать кислород и удалить полученный, таким образом, углекислый газ. Джозеф Пристли в те времена являлся приверженцем теории флогистона. Соответственно, он абсолютно неправильно истолковывал получаемые результаты и был абсолютно уверен в том, что не кислород вытесняется из воздуха, а наоборот. Пристли не сомневался, что в процессе производимых им манипуляций происходит насыщение воздуха флогистоном. Таким образом, он именовал оставшийся воздух (то есть практически азот) флогистированным, что означало — насыщенным флогистоном.
Оба эти экспериментатора хоть и нашли способы выделить из воздуха азот, но не считаются его первооткрывателями вследствие ошибочного толкования результатов своей деятельности. Карл Шееле в те же времена занимался аналогичной деятельностью, а Даниэль Резерфорд все в том же 1772 году опубликовал магистерскую диссертацию, в которой упомянул азот, используя термин «испорченный воздух». Резерфордом в своей научной работе были указаны основные свойства азота. Им абсолютно верно было установлено следующее:
- отсутствие взаимодействия полученного газа со щелочами;
- непригодность использования его для дыхания;
- выделенный газ не поддерживает горения.
В связи с верными выводами именно Даниэля Резерфорд многие признали первооткрывателем азота. К сожалению, он также, как и Джозеф Пристли был приверженцем флогистонной теории, поэтому так и не смог осознать, что именно за вещество ему удалось выделить из обычного атмосферного воздуха. Анализируя все вышесказанное, можно прийти к выводу, что точно определить, кто же именно открыл азот, не представляется возможным. Азот и далее подвергался исследованию многими учеными, которые все-таки со временем определили полный спектр его характеристик, что позволило в наши дни использовать данный газ во многих сферах профессиональной деятельности человека.
Как настроить центр сообщений на телефоне
Осуществить подключение возможно в любой момент дня и ночи, стоит только набрать 0832. Звонок бесплатный для всех абонентов сети Билайн. После этого вам на телефон придет SMS-извещение о том, что вы подключились на эту подписку. Одновременно с этим придёт приглашение на создание нового диалога.
С номера 6249 вы будете получать инструкции, при помощи которых сможете пригласить абонента и создать SMS-диалог. Следует только помнить, что при создании диалога нужно отдавать предпочтение абоненту, которого вы хорошо знаете и который без всякого сомнения согласится на ваше приглашение. В СМС, которое вы получите, будет написано приглашение к диалогу от абонента, который его создает. В сообщении вам будет предложен выбор: согласиться (отправив цифру «1») или отказаться (соответственно, отправить «2»). На данный момент в рамках этой услуги вы сможете отправить не более 50 СМС в день. Отправка СМС, задействованных в самом диалоге, на номер 6249 является бесплатной.
Криоаппликация
В косметологии для лица, жидкий азот нашел свое успешное действие, при удалении различных прыщей, бородавок, шрамов. Когда применяют жидкий азот для удаления, то его оставляют на коже чуть дольше, чем при массаже. Таким же образом, при помощи деревянной палочки с ватой, косметолог наносит жидкий азот на проблемный участок и держит 30 секунд, затем убирает.
В течение одной минуты на месте воздействия жидкого на коже возникает приток крови с небольшим отеком. Припухлость остается на лице в течение некоторого времени и превращается в плотную корочку. Спустя немного времени она отпадает и на ее месте остается молодая кожа. Со временем цвет кожи выравнивается под общий тон лица.
Удаление жидким азотом можно сравнить с прижиганием, только в этом случае к коже подносят не раскалившийся металл, а аппликатор из ваты.
Криоаппликация- это настоящая находка для тех, кто постоянно страдает избытком пигментации на коже. В этом случае пятна просто выжигают, это совершенно безопасно и безболезненно. Если Вы хотите с помощью жидкого азота избавиться от пигментации кожи, то не желательно проводить такую процедуру в жаркое время года.
Да и находиться под воздействием прямых солнечных лучей после проведения процедуры тоже не рекомендовано. Пигментация может увеличиться.
Мы рассмотрели виды применения этого средства в косметологии, и как он эффективно воздействует на кожу. Попробуем разобраться опасно ли его применение?
Применение
Газообразный азот
Промышленное применение газообразного азота обусловлено его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтедобывающей промышленности газообразный азот применяется для обеспечения безопасного бурения, используется в процессе капитального и текущего ремонта скважин. Кроме того, газообразный азот высокого давления используют в газовых методах повышения нефтеотдачи пласта. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы, тушения эндогенных пожаров. В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.
Газообразным азотом заполняют камеры шин шасси летательных аппаратов. Кроме того, в последнее время заполнение шин азотом стало популярно и среди автолюбителей, хотя однозначных доказательств эффективности использования азота вместо воздуха для наполнения автомобильных шин нет.
Жидкий азот
Жидкий азот применяется как хладагент и для криотерапии.
Слабокипящий жидкий азот в металлическом стакане.
Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Более ¾ промышленного азота идёт на синтез аммиака
Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.
В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.
Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённое заблуждение. Даже для замораживания цветка необходимо достаточно продолжительное время. Это связано отчасти с весьма низкой теплоёмкостью азота. По этой же причине весьма затруднительно охлаждать, скажем, замки до −196 °C и раскалывать их одним ударом.
Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.
Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом, в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота.
В качестве легирующей добавки к кремнию, образует высокопрочное соединение (керамику) нитрид кремния, обладающее высокой вязкостью и прочностью.
Применение на различных типах почв
Все однокомпонентные азотные удобрения хорошо растворимы в воде.
передвигаются вместе с почвенным раствором и связываются в почве только биологическим типом поглощения. Биологическое поглощение активно только в теплое время года. С поздней осени до ранней весны нитраты легко передвигаются в почве и в условиях промывного водного режима могут вымываться, что особенно характерно для легких почв.
В теплое время года в почвах преобладают восходящие потоки влаги. А растения и микроорганизмы активно поглощают нитратный азот.
формы в почве поглощаются почвенным комплексом (ППК) и переходят в обменно-поглощенное состояние. В таком виде подвижность азота теряется, и он не вымывается. Исключение – легкие почвы с низкой емкостью поглощения.
Дальнейшие процессы нитрификации способствуют трансформации азота в нитратные формы и биологическому поглощению его растениями и микроорганизмами почвы.
Эффективность внесения азотных удобрений зависит от почвенно-климатических условий региона. Наибольшая эффективность азотных удобрений наблюдается в районах достаточного увлажнения.
. Действие азотных удобрений устойчиво положительно. Причем, с повышением степени выщелоченности черноземов возрастает и эффективность азотных удобрений.
нечерноземной зоны испытывают острую нехватку азота, поэтому здесь наблюдается высокая эффективность действия азотных удобрений. Однако в условиях промывного режима почвы отмечаются значительные потери азота, и его внесение производят преимущественно в весенний период.
. Действие азотных удобрений снижается, поскольку в минимуме оказываются фосфорные и калийные удобрения. Однако в первые годы освоения торфяников в центральных и северо-западных районах нечерноземной зоны возрастает и эффективность азотных удобрений.
правобережной лесостепи Украины показывают большую эффективность по применению азотных удобрений, чемлевобережной.
. Наблюдается меньшая эффективность азотных удобрений в Поволжье. В Центрально-Черноземной зоне и на Северном Кавказе она несколько выше.
при повышении засушливости климата действие азотных удобрений уменьшается либо становится очень неустойчивым. Но в условиях орошения эффективность действия азотных удобрений возрастает и бывает даже более высокой, чем фосфорных и калийных удобрений.
Молдавии отличаются большими прибавками урожая.
Молдавии характеризуются меньшей эффективностью однокомпонентных азотных удобрений.
. Азотные удобрения показывают значительную эффективность, но и действие значительно ослабляется с запада на восток.
отличаются значительным положительным действием азотных удобрений.
. Эффективность удобрений снижается.
. При лучших условиях увлажнения отмечается хорошее действие удобрений. В засушливых условиях действие азотных удобрений бывает слабым.
Cвойства аммиака.
Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.
Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ | ||
Свойство | Аммиак | Вода |
Плотность, г/см3 | 0,65 (–10° С) | 1,00 (4,0° С) |
Температура плавления, °С | –77,7 | |
Температура кипения, °С | –33,35 | 100 |
Критическая температура, °С | 132 | 374 |
Критическое давление, атм | 112 | 218 |
Энтальпия испарения, Дж/г | 1368 (–33° С) | 2264 (100° С) |
Энтальпия плавления, Дж/г | 351 (–77° С) | 334 (0° С) |
Удельная электропроводность | 5Ч10–11 (–33° С) | 4Ч10–8 (18° С) |
Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).
Разновидности удобрений, содержащих азот
Классифицируют удобрения по двум основным признакам.
По агрегатному состоянию:
- твердое — в виде гранул, применяется, как правило, в весенне-летний период из-за быстрого вымывания из почвы;
- жидкое — в виде растворов, легко усваиваются растениями и равномерно распределяются в почве.
По действующему компоненту, в котором содержится азот:
Аммиачные — на основе аммония:
- Аммиачная селитра — 35% (N), широко применяется в весенне-летний период для основного удобрения и подкормки, выпускается в виде белых гранул. Не рекомендуется для переувлажненных участков из-за быстрого вымывания. Хорошо укрепляет стволовую часть и развивает листья. Сильно окисляет почву, поэтому применяется с нейтрализаторами.
- Сульфат аммония — 20,5% (N), может применяться осенью и весенне-летний периоды для основного питания и подкормок, выпускается в гранулах. Также требует добавления нейтрализатора (мела, извести). Прекрасно зарекомендовал себя как подкормка для картофеля.
- Хлористый аммоний — 25% (N), абсолютно не слеживается при хранении, легко усваивается всеми видами растений, вносить можно только осенью как основное удобрение из-за содержания хлора. Для подкормки не используется.
Нитратные — на основе нитратных соединений:
- Калийная селитра (нитрат калия) — 13% (N), производится в виде порошка или кристаллов, используется для кислых почв в качестве нейтрализатора. Хорошо подходит для подкормки в весенне-летний период, укрепляет корневую систему. Легко растворяется в воде, поэтому требует особых условий хранения и упаковки (герметически запакованные целлофановые мешки).
- Натриевая селитра (нитрат натрия) — 16% (N), выпускается в виде кристаллического порошка, хорошо растворяется в воде, применяется в виде подкормки для корнеплодов. Подходит для всех видов почв, рекомендуется для внесения ранней весной при посеве культур. Особенно эффективна в кислых почвах, выступая щелочным нейтрализатором.
- Кальциевая селитра (нитрат кальция) — 13%(N), выпускается в форме гранул и кристаллов, хорошо растворяется в воде, подходит для всех видов грунта. Кальций облегчает процесс усвоения азота растениями и особенно помогает развитию корневой системы.
Амидные — органическое соединение на основе аммиака и углекислого газа:
Мочевина (карбамид) — 46% (N), выпускается в виде гранул в защитной пленке, предотвращающей слеживание. Отлично подходит для всех видов почв, особенно для увлажненных, так как обладает стойкостью к вымыванию из почвы. Не вызывает ожогов листьев, поэтому отлично подходит для подкормки.
Мочевину рекомендуется вносить в комплексе с калийными удобрениями из-за содержания биурета — токсичного вещества, оказывающего негативное действие на растения.
Соединения азота
Степени окисления азота в соединениях −3, −2, −1, 0, +1, +2, +3, +4, +5.
- Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак;
- Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2H4 или гидразин (существует также крайне неустойчивый пернитрид водорода N2H2, диимид);
- Соединения азота в степени окисления −1 NH2OH (гидроксиламин) — неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;
- Соединения азота в степени окисления +1 оксид азота(I) N2O (закись азота, веселящий газ);
- Соединения азота в степени окисления +2 оксид азота(II) NO (монооксид азота);
- Соединения азота в степени окисления +3 оксид азота(III) N2O3 (сесквиоксид азота, триоксид диазота), азотистая кислота, производные аниона NO2−, трифторид азота (NF3);
- Соединения азота в степени окисления +4 оксид азота(IV) NO2 (диоксид азота, бурый газ);
- Соединения азота в степени окисления +5 оксид азота(V) N2O5 (пентаоксид диазота), азотная кислота, её соли — нитраты и другие производные, а также тетрафтораммоний NF4+ и его соли.